Orbit

交通大學-分子醫學與生物工程所

瀏覽人次: 5306

研究成果

分子遺傳研究    楊昀良博士(Molecular Genetics Lab – PI: Dr. Yun-Liang Yan)

  • 發現白色念珠菌形態/毒性因子與抗藥因子有協同調控及交互作用。兩個途徑(Pathways)都受已知的毒性因子Efg1 與Cph1的調控。 
  • 發現第一個抗登革熱病毒的藥物。

研究室    王雲銘博士 ( Lab – PI: Dr. Yun-Ming Wang)

 

  • 2007 Joint Annual Meeting ISMRM (International Society for Magnetic Resonance in Medicine)-ESMRMB (European Society for Magnetic Resonance in Medicine and Biology) 2007 Poster Award 3rd place

This is an image

  • Synthesis, Complexation and Water Exchange Properties of Gd(III)–TTDA–Mono and Bis(amide) Derivatives and Their Binding Affinity to Human Serum Albumin, Dalton Trans., 2749-2759, 2007. (Selected as Journal Cover)
    我們成功的合成出一個單醯胺TTDA衍生物,TTDA-N-MOBA及兩個雙醯胺TTDA衍生物,TTDA-BMA與TTDA-BBA。TTDA-N- MOBA、TTDA-BMA及TTDA-BBA之釓金屬錯合物在20 MHz、37 C下,求得其弛緩率(r¬1)分別為4.23、3.92及4.41 mM1 s1。釓金屬錯合物之內層水分子交換速率(kex298)及分子轉動相關時間(R)則利用9.4 T之17O NMR求得。實驗結果顯示TTDA單醯胺衍生物,[Gd(TTDA-MOBA)],其kex298值為29.1  106 s1,大約是[Gd(TTDA)]2−之kex298值的1/5。另一方面,TTDA雙醯胺衍生物,[Gd(TTDA-BMA)]與[Gd(TTDA- BBA)],其kex298值分別為15.2  106 s1及15.6  106 s1,大約是[Gd(TTDA)]2−之kex298值的1/10。另外,由17O NMR實驗結果顯示, [Gd(TTDA-MOBA)]、[Gd(TTDA-BMA)]及[Gd(TTDA-BBA)]之分子轉動相關時間分別為157、119及187 ps,其值高於[Gd(DTPA)]2(103 ps)與[Gd(TTDA)]2−(104 ps)。在 [Gd(TTDA-BBA)]與HSA形成非共價性鍵結實驗中,分別求得鍵結常數(KA)為1.0  104 M1,而鍵結弛緩率( )分別為52.0 mM1 s1。最後,由弛緩率研究與超過濾實驗發現,[Gd(TTDA-BBA)]與HSA之鍵結弛緩率高於商業化之磁振造影對比劑MS-325。
  • Synthesis and Characterization of a New Bio-activated Paramagnetic Gadolinium(III) Complex [Gd(DOTA-FPG)(H2O)] for Tracing Gene Expression, Bioconjugate Chem. 18, 1716-1727, 2007. (Selected as Journal cover)
    我們設計、合成出具有半乳喃醣官能基之新穎釓金屬錯合物 [Gd(DOTA-FPG)],並針對其物、化性及生物活性上做一系列之探討。利用 17O NMR 測定Dy(III)金屬離子誘導水中17O 核種之化學位移變化來測得 [Gd(DOTA-FPG)]之內層水分子數,得其內層水分子數q = 0.92,並利用 Eu(III)金屬錯合物的化學發光性質以螢光光譜儀測得之數值求得其內層水 分子數q = 1.08,由這兩個實驗結果來確定其內層水分子數。另外我們再以 17O 核磁共振光譜儀實驗來求得釓金屬錯合物之弛緩率(1/ T1、1/ T2)以及化學位移(ω),再進行數據逼近,可計算出釓金屬錯合物之內層水分子停留時間(τM)及分子轉動相關時間(τR)。弛緩率( r1 )主要受到內層水交換速率( kex298 )及分子轉動相關時間(τR)影響,在17O-NMR 研究結果顯示[Gd(DOTA-FPG)]之水交換速率kex298 近似於[Gd(DOTA)]− 及[Gd(DTPA)]2− , 明顯較[Gd(TRITA-bz-NO2)]− 及[Gd(TTDA)]2− 來的低, 實驗結果亦發現將[Gd(DOTA)]−的一個羧酸基置換成雙氟甲苯基半乳喃糖使得分子轉動相關時間增加。

This is an image

  • 由弛緩率的增加和磁振照影影 像對比提高之證據說明了當[Gd(DOTA-FPG)]在有半乳喃醣酵素和人類血清蛋白(HSA, human serum albumin)表現的環境時,半乳喃醣酵素(β-gal)或人類血清蛋白(HSA)與切除了半乳喃醣官能基部分的釓金屬錯合物產生了共價性鍵結,相對增 加了分子轉動相關時間(τR)而使得弛緩率提高。在體內動物影像研究方面,具有半乳糖酵素基因表現之CT26(老鼠結腸癌細胞)/ β-gal 腫瘤在磁振造影影像中較CT26 腫瘤具有較高的訊號增強效果。因此,[Gd(DOTA-FPG)(H2O)] 為具有生物活性之磁振造影對比劑且有足夠的潛力追蹤基因表現。 

This is an image

This is an image


生物晶片與細胞生物研究室    袁俊傑博士(The Cell Biology and BioChip Lab – PI: Dr. Chiun-Jye Yuan)

  • Mst3所引發細胞凋亡之分子機轉之研究
    在近期研究中我們發現Mst3 不只存在於細胞質內,亦存在於粒線體膜間隙(intermembrane space) 內。我們更進一步發現在粒線體膜間隙Mst3會與其中之誘發細胞凋亡蛋白,如 AIF 及 endonuclease G (EndoG),結合形成複合體。而經由免疫金粒子電子顯微影像及西方墨點法進一步確認Mst3 存在於粒線體膜間隙的事實。在粒線體中,Mst3可能參與了調控誘發細胞凋亡蛋白(如 AIF 及 EndoG)的活性。然而,Mst3亦有可能激活附著於複合體上的未知的核酸內切酵素(DNase),而促成細胞凋亡。

This is an image

圖一、Mst3在粒線體內與 AIF 及 endonuclease G (EndoG)形成複合體。圖中所示,細胞內Mst3 (絲線狀綠色螢光) 與 Mitotracker (專一性粒線體標記、紅色螢光)、AIF 及 EndoG (皆為紅色螢光)有重疊現象,即在螢光顯微影像呈黃菊色訊號。

  • Mst3 在孕婦生產過程及懷孕期病變上角色之探討
    由病理切片(圖二)及細胞作用機轉相關研究顯示, Mst3 在孕婦懷孕後期會受到氧化逆境(oxidative stress)的刺激 (而非生產過程相關荷爾蒙,如、前列腺素 E1、摧產素、血管收縮素等) 在胎盤中大量表現活化,並進而激發胎盤內滋養細胞(trophoblasts)的凋亡現象。此一現象可能是促發胎兒生產的起始信號,並對生產後期的協助胎盤剝離子宮內膜有實際助益。 

This is an image

圖二、人類自然產胎盤(a-d)、 剖腹產胎盤 (e-h)及產程第一期胎兒組織 (fetal membrane of first trimester) (i-l)。 Mst3 表現 (a,e,i)、細胞凋亡s (b,f,j)、 nitrotyrosine訊號s (c,g,k)及aspase3活化 (d,h,l)。

  • 研發奈米生物材料並應用於癌症治療
    我們已開發一新穎的包裹山葵過氧化酵素的奈米粒子(horseradish peroxidase -encapsulated silica nanoparticles; HRP-SNP)。此一奈米粒子的平均大小約為直徑 100 nm (圖 3)。 實驗證實HRP-SNP 可有效將無毒前驅藥indole-3-acetic acid (IAA)摧化成有毒之抗癌藥,並可應用於癌細胞的毒殺。進一步實驗證實HRP-SNP 生物相容性高,對細胞並不具毒性,且因外源性蛋白被玻璃凝膠基質所保護,而具減少免疫反應及延長酵素活性及穩定性的優勢。 

This is an image

圖三、TEM of the developed ESNP.

This is an image


分子調控研究室    彭慧玲博士(Molecular regulation Lab – PI: Dr. Hwei-Ling Peng)

This is an image


分子生物物理研究室    張家靖博士(Nano-Biotechnolgy Lab – PI: Dr. Chia-Ching Chang)

  • Self-assembled molecular magnets on patterned silicon substrates: Bridging bio-molecules with nanoelectronics 
    The paper reports the methods of preparing molecular magnets and patterning of the molecules on a semiconductor surface. A highly magnetically aligned metallothionein containing Mn and Cd (Mn,Cd-MT-2) is first synthesized, and the molecules are then placed into nanopores prepared on silicon (0 0 1) surfaces using electron beam lithography and reactive ion-etching techniques. We have observed the self-assemble growth of the MT molecules on the patterned Si surface such that the MT molecules have grown into rod or ring type three dimensional nanostructures, depending on the patterned nanostructures on the surface. We also provide scanning electron microscopy, atomic force microscopy, and magnetic force microscope studies of the molecular nanostructures. This engineered molecule shows molecular magnetization and is biocompatible with conventional semiconductors. These features make Mn,Cd-MT-2 a good candidate for biological applications and sensing sources of new nanodevices. Using molecular self-assembly and topographical patterning of the semiconductor substrate, we can close the gap between bio-molecules and nanoelectronics built into the semiconductor chip.

This is an image

  • Laser induced popcornlike conformational transition of nanodiamond as a nanoknife 
    Nanodiamond (ND) is surrounded by layers of graphite on its surface. This unique structure feature creates unusual fluorescence spectra, which can be used as an indicator to monitor its surface modification. Meanwhile, the impurity, nitroso (C-N=O) inside the ND can be photolyzed by two-photon absorption, releasing NO to facilitate the formation of a sp3 diamond structure in the core of ND and transforming it into a sp2 graphite structure. Such a conformational transition enlarges the size of ND from 8 nm into 90 nm, resulting in a popcorn-like structure. This transition reaction may be useful as nano-knives in biomedical application.

    1. SEM images of the A549 cell lines, irradiated with/without laser following ND treatment.
    2. SEM image of 6 nm nano-diamond before and after laser radiated. The average size of laser radiated nano-diamond is about 90 nm.

 

This is an image

This is an image


分子抗癌研究室   趙瑞益博士 (Molecular Anticancer Lab – PI: Dr. Jui-I Chao) 

  • 近 幾年我們針對癌細胞中的標靶基因survivin及securin等,進行深入的研究。例如多種人類癌細胞(包括肺癌、乳癌、大腸癌及子宮頸癌等)會大量 表達survivin蛋白,但在正常成人細胞不會表達survivin。Survivin蛋白具有抗細胞凋亡及促細胞分裂的功能,調控癌細胞中 survivin蛋白的表達,與癌症的發生有密切的關係,而抑制survivin蛋白的表達,也可能應用於治療癌症。我們建立了cyclin B1/cdc2與p38 MAP kinase可分別為正調控及負調控survivin基因及蛋白的表現(Chao et al., 2004, JBC)。此外,利用共軛焦顯微鏡及免疫螢光染色,建立survivin蛋白會大量表達於癌細胞之有絲分裂期,並會聚集於細胞質分裂期的midbody位 置(Kuo et al., 2004, JBC)。同時我們發現將survivin基因阻斷,會促進抗癌藥物抑制癌細胞的生長及促細胞凋亡之作用(Chao and Liu, 2006, Mol. Pharmacol.)。以COX-2的抑制劑,celecoxib及etodolac,發現抑制COX-2的活性會降低survivin蛋白表達,並加 強抗癌藥物oxaliplatin的抗癌效果(Lin et al., 2005, Biochem. Pharmacol.)。Celecoxib會經由活化p38 MAP kinase路徑,抑制大腸癌細胞中survivin蛋白的表達(Hsiao et al., 2007, TAAP)。而黃芩素(baicalein)會抑制膀胱癌細胞中survivin的表達,並誘發癌細胞凋亡(Chao et al., 2007, Mol. Cancer Ther.)。在抗癌奈米科技(Anticancer Nanotechnology)的研究,我們發現奈米鑽石具有特殊螢光特性及作用,被選為生物物理期刊的封面(Chao et al., 2007, Biophys. J.)。此奈米材質不會造成正常細胞毒性及細胞凋亡,具有高度的生物相容性,並且奈米鑽石在細胞內的螢光強度可被檢測及量化 (Liu et al., 2007, Nanotechnology),我們進一步以蛇毒蛋白連結奈米鑽石,可辨識細胞上的接受器(Liu et al., 2008, Nanotechnology),目前我們已經開發出奈米鑽石攜帶抗癌藥物的方法。此外,我們進一步開發奈米鑽石作為癌細胞及幹細胞的標定、偵測及追蹤等 應用。

This is an image

 


腫瘤免疫治療研究室    廖光文博士(Immunology and Oncology Lab – PI: Dr. Kuang-Wen Liao)

  • 免疫學:已檢驗出幽門螺旋桿菌對於細胞產生影響之主要分子—Hsp-60,正深入探討其誘發免疫反應之主要機制,並研究Hsp60對於其他細胞所產生之影響
  • 微脂體 (Liposome):已完成此構型之建構,深入研究其快速且穩定吸附的作用力之機制及原理,同時利用此微脂體之特性包覆藥物,並結合導向分子
    以達到專一性輸送藥物之目的。
  • 抗體之製作及蛋白質工程:完成以VEGF及IgG Fc部份結合之抗體生產,純化及應用。
    發現其可有效達到治療腫瘤之目的。

This is an image


細胞骨架及型態發生實驗室     黃兆棋博士 (Cytoskeleton and Cellular Morphogenesis Lab – PI: Dr. Eric Hwang)

  • We used pluripotent P19 cells to study the function of microtubule-associated proteins during neuritogenesis. Multi-dimensional protein identification technology (one type of gel-free high throughput proteomics) was performed on microtubule-associated proteins prepared before versus shortly after neurite induction. More than 800 proteins were consistently identified in both proteomes. Surprisingly, when these two proteomes were quantitatively compared, the majority of the proteome remain unchanged. Substantial changes in the microtubule-associated proteome occurred at the level of individual proteins. Based on our proteomic results, we assayed primary neurons using RNA interference to identify a novel inhibitory role for protein TRIM2 in neurite elongation.

This is an image

This is an image

Top